Search results for "Length scale"

showing 10 items of 75 documents

Dynamic Self-Consistent Field Approach for Studying Kinetic Processes in Multiblock Copolymer Melts

2020

The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical processes in the diffusive, non-inertial regime. The central quantity in these approaches is the mobility function, which describes the effect of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a recent study [Mantha et al, Macromolecules 53, 3409 (2020)], we have developed a method to systematically construct mobility functions from reference fine-grained simulations. Here we focus on melts of linear chains …

Chemical Physics (physics.chem-ph)Physicsordering kineticsMesoscopic physicsPolymers and PlasticsField (physics)Thermodynamic equilibriumDynamic structure factorFOS: Physical sciencesNon-equilibrium thermodynamicsContext (language use)General ChemistryCondensed Matter - Soft Condensed MatterDynamic densityArticlelcsh:QD241-441lcsh:Organic chemistrydynamic density functional theoryPhysics - Chemical Physicstwo-length scale copolymerssingle chain structure factorSoft Condensed Matter (cond-mat.soft)Density functional theoryStatistical physicsmultiblock copolymersPolymers
researchProduct

From connected pathway flow to ganglion dynamics

2015

During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus…

Coalescence (physics)HydrologyLength scaleGeophysicsMaterials scienceMass transferMultiphase flowGeneral Earth and Planetary SciencesImbibitionWettingMechanicsBreakupSaturation (chemistry)Geophysical Research Letters
researchProduct

Symmetric diblock copolymers confined into thin films: A Monte Carlo investigation on the CRAY T3E

2000

We present the results of large scale computer simulations targeted at investigating the phase stability and the structure of symmetric AB diblock copolymers in thin films. The connectivity of the two different monomer species A and B in the diblock copolymer prevents macrophage separation and the molecules assemble into A-rich and B-rich domains on the scale of the molecule’s extension. This large length scale of the ordering phenomena makes these polymeric systems a promising candidate for revealing the universal features of self-assembling in amphiphilic molecules. However, the widely spread length and time scales impart protracted long relaxation times to the systems and pose a challeng…

Condensed Matter::Soft Condensed MatterLength scaleCapillary waveMaterials scienceChemical physicsRelaxation (NMR)Monte Carlo methodPerpendicularMoleculeLamellar structureThin film
researchProduct

Three-step decay of time correlations at polymer-solid interfaces

2012

Two-step decay of relaxation functions, i.e., time scale separation between microscopic dynamics and structural relaxation, is the defining signature of the structural glass transition. We show that for glass-forming polymer melts at an attractive surface slow desorption kinetics introduces an additional time scale separation among the relaxational degrees of freedom leading to a three-step decay. The inherent length scale of this process is the radius of gyration in contrast to the segmental scale governing the glass transition. We show how the three-step decay can be observed in incoherent scattering experiments and discuss its relevance for the glass transition of confined polymers by an…

Condensed Matter::Soft Condensed MatterLength scaleMaterials scienceCondensed matter physicsScale (ratio)Critical phenomenaDegrees of freedom (physics and chemistry)Radius of gyrationIncoherent scatterGeneral Physics and AstronomyRelaxation (physics)Glass transitionEPL (Europhysics Letters)
researchProduct

KOSMOS 2018 Gran Canaria mesocosm study: particle flux data from sediment trap

2021

The data set compiles sinking flux data collected during a KOSMOS mesocosm experiment carried out in the frame work of the Ocean Artificial Upwelling project. The experiment was performed in the North-East Atlantic Ocean off the coast of Gran Canaria in autumn 2018 and lasted for 39 days. In this study we investigated the effect of different intensities of artificial upwelling combined with two upwelling modes (recurring additions versus one singular addition) on POC export and its potential transfer efficiency to depth. The data set includes the amounts of surface water that were exchanged with nutrient-rich deep water (from ~300 m depth). It also contains particle flux data, i.e. POC flux…

DEPTH water experimentRemineralisation rate of carbon per dayNitrogenorganicOcean Artificial Upwelling Ocean artUpwaterartificial upwellingOcean Artificial Upwelling (Ocean-artUp)Particle porosityremineralization rateRemineralisation length scaleBiogenic silicaDATE TIMEparticle propertiesCarbon Nitrogen ratioCarbon Silicon ratioMesocosm labelparticulatetotalNitrogen organic particulate flux per dayflux per dayexperimentDeep water exchange totalCarbon organic particulate flux cumulativeMesocosm experimentcumulativeEvent labelsinking velocityCarbon/Silicon ratiocarbon sequestrationCarbonCarbon/Nitrogen ratiofluxexport fluxTreatmentNitrogen organic particulate flux cumulativeDeep water exchangeDATE/TIMEKOSMOS_2018DEPTHEarth System ResearchExperiment dayBiogenic silica flux per daymesocosm studyremineralization depthCarbon organic particulate flux per day
researchProduct

Atomic diffraction from nanostructured optical potentials

2002

We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.

DiffractionPhysicsLength scaleCondensed Matter::Quantum GasesScatteringbusiness.industryAtomic Physics (physics.atom-ph)Wave packetPhysics::OpticsFOS: Physical sciencesNear and far fieldPolarization (waves)Atomic and Molecular Physics and OpticsPhysics - Atomic PhysicsOpticsUltracold atomAtomPhysics::Atomic PhysicsAtomic physicsbusiness
researchProduct

Palatini actions and quantum gravity phenomenology

2011

We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmol…

High Energy Physics - TheoryLength scalePhysicsFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Invariant (physics)General Relativity and Quantum CosmologyGravitationTheoretical physicsGeneral Relativity and Quantum CosmologySingularityHigh Energy Physics - Theory (hep-th)Quantum gravityCovariant transformationPhenomenology (particle physics)Big Bounce
researchProduct

A minimal length from the cutoff modes in asymptotically safe quantum gravity

2005

Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.

High Energy Physics - TheoryLength scalePhysicsNuclear and High Energy PhysicsSpacetimeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyManifoldAction (physics)Proper lengthClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityCutoffQuantumJournal of High Energy Physics
researchProduct

Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale

2020

Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our mo…

High Energy Physics - TheoryLength scaleQuantum decoherenceScienceQuantum physicsGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum spacetime01 natural sciencesGeneral Relativity and Quantum CosmologyArticleGeneral Biochemistry Genetics and Molecular BiologyGravitation0103 physical sciencesMaster equation010306 general physicsQuantumCondensed Matter - Statistical MechanicsPhysicsMesoscopic physicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsQGeneral ChemistryClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityQuantum Physics (quant-ph)Theoretical physics
researchProduct

Shear heating induced lithospheric-scale localization: Does it result in subduction?

2012

Abstract Even though it is a well-established fact that the Earth is currently in a plate-tectonics mode, the question on how to “break” lithospheric plates and initiate subduction remains a matter of debate. Here we focus on shear heating as a potential mechanism to cause lithospheric shear localization and subsequent subduction initiation in oceanic plates. It is shown that shear heating under some conditions (i) facilitates the formation of a lithospheric-scale shear zone and (ii) is capable of stabilizing a lithospheric-scale shear zone, thus creating the necessary condition for subduction initiation to occur. Furthermore, we demonstrate that not only the localization process is of impo…

Length scale010504 meteorology & atmospheric sciencesCharacteristic lengthSubductionGeophysics010502 geochemistry & geophysics01 natural sciencesGeophysicsShear (geology)13. Climate actionSpace and Planetary ScienceGeochemistry and PetrologyLithosphereOceanic crustEarth and Planetary Sciences (miscellaneous)Shear zoneEclogitizationGeology0105 earth and related environmental sciencesEarth and Planetary Science Letters
researchProduct